
SEMANTICS-BASED
WCET ANALYSIS

MIHAIL ASĂVOAE

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE

UNIVERSITY "ALEXANDRU IOAN CUZA" IASI

2012





List of Publications

Revised publications
directly related with the disserta-
tion

1. Mihail Asăvoae, and Dorel Lucanu and Grigore
Roşu
Towards Semantics-Based WCET Analysis

Proceedings of the 11th International Workshop
on Worst-Case Execution-Time Analysis (WCET2011)
editor Christopher Healy
Ed. Austrian Computer Society (OCG). (to ap-
pear)
in Oasics Series, Schloss Dagstuhl (to appear)

i



2. Mihail Asăvoae, and Irina Măriuca Asăvoae:
Using the Executable Semantics for CFG Ex-

traction and Unfolding

13th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing,
SYNASC 2011, Timisoara, Romania, 26-29
September 2011,
editors Dongming Wang, Viorel Negru, Tetsuo
Ida, Tudor Jebelean, Dana Petcu, Stephen M.
Watt and Daniela Zaharie,
pages 123–127, IEEE Computer Society, 2011,
ISBN 978–1–4673–0207–4.

3. Mihail Asăvoae, Irina Măriuca Asăvoae, and
Dorel Lucanu:
On Abstractions for Timing Analysis in the K
Framework

Second International Workshop on Foundational
and Practical Aspects of Resource Analysis,
FOPARA 2011, Madrid, Spain, May 2011, Re-
vised selected papers,
editors Ricardo Peña, Marko van Eekelen, and

ii



Olha Shkaravska,
volume 7177 of Lecture Notes in Computer Sci-
ence pages 90–107, Springer, 2011,
ISBN 978–3–642–32494–9.

4. Mihail Asăvoae:
K Semantics for Assembly Languages: A Case

Study

Submitted to The K Workshop 2011

Technical reports and extended
abstracts
directly related with the disserta-
tion

1. Mihail Asăvoae and Dorel Lucanu
Formal Executable Semantics for Timing Analy-

sis

Technical Report TR SIC-08/11, Universidad
Complutense de Madrid, Departamento de Sis-
temas Informáticos y Computación, pages 64–

iii



78

2. Mihail Asăvoae:
A K-Based Methodology for Modular Design of

Embedded Systems

Extended abstract in pre-proceedings of WADT
2012, 21st International Workshop of Algebraic
Development Techniques, June 7-10, Salamanca,
Spain
Technical Report TR–08/12, Universidad Com-
plutense de Madrid, Departamento de Sistemas
Informáticos y Computación, editors Narciso
Martí-Oliet and Miguel Palomino, pages 16–17

Publications co-related with the
dissertation

Revised papers:

1. Irina Măriuca Asăvoae, and Mihail Asăvoae:
Collecting Semantics under Predicate Abstrac-

tion in the K Framework,

iv



Rewriting Logic and Its Applications - 8th In-
ternational Workshop, WRLA 2010, Held as a
Satellite Event of ETAPS 2010, Paphos, Cyprus,
March 20-21, 2010, Revised Selected Papers,
editor P.C. Olveczky, volume 6381 of Lecture
Notes in Computer Science, pages 123–139,
Springer, 2010,
ISBN 978–3–642–16309–8.

2. Irina Măriuca Asăvoae, Mihail Asăvoae, and
Dorel Lucanu:
Path Directed Symbolic Execution in the K Frame-

work

12th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing,
SYNASC 2010, Timisoara, Romania, 23-26
September 2010, editors Tetsuo Ida, Viorel Ne-
gru, Tudor Jebelean, Dana Petcu, Stephen M.
Watt and Daniela Zaharie, pages 133–141, IEEE
Computer Society, 2010,
ISBN 978–0–7695–4324–6.

v



Others:

1. Adrián Riesco, Irina Măriuca Asăvoae, and Mi-
hail Asăvoae:
A Generic Program Slicing Technique based on

Language Definitions

Extended abstract in pre-proceedings of WADT
2012, 21st International Workshop of Algebraic
Development Techniques, June 7-10, Salamanca,
Spain
Technical Report TR–08/12, Universidad Com-
plutense de Madrid Departamento de Sistemas
Informáticos y Computación, editors Narciso
Martí-Oliet and Miguel Palomino, pages 16–17,
pages 91–92

vi



Chapter 1

Introduction

This dissertation presents the design of a defini-

tional semantics-based WCET analyzer, bridging

the gap between the principles of formal executable

specification, promoted by the K framework and

the existing methods and techniques, which were

successfully applied in analysis and verification of

embedded software. The standard view on WCET

1



Chapter 1. Introduction

analysis considers the set of all possible executions

of a given program on a specified, underlying hard-

ware. Therefore, there is a projection of design

and implementation methods at both the level of

the program and the architecture. We present a

novel, unified view on this projection, using the K

framework definitional power (i.e. via configura-

tion representation and manipulation). We define a

formal executable semantics of a RISC assembly

language and a parametric specification for micro-

architecture behavior, namely for instruction and

data caches. In this way, a program can be formally

executed, in concrete, on a family of architectures

(i.e. with respect to several design parameters).

This combined system is modular, consists of a

number of communicating modules corresponding

2



Chapter 1. Introduction

to hardware and software components. Moreover,

this organization allows us to investigate, at the

level of individual or group of modules, how to

embed, definitionally, various abstractions for tim-

ing analysis. We present embeddings for program-

related abstractions such as extraction of a control-

flow graph, generation of structural integer linear

programming constraints, constant propagation and

interval analysis. Also, we present the integration

of hardware-related abstractions for cache behavior

prediction. Our work fully adheres to the principles

of design of programming languages and their af-

ferent analysis tools, as advertised by K framework

— formal definition of a programming language

should be used unmodified in program analysis and

verification.

3



Chapter 1. Introduction

1.1 Motivation

Ideally, program analysis tools should be based on

rigorous semantics of the employed programming

languages. Unfortunately, giving a formal seman-

tics (using conventional approaches) to a real lan-

guage is a non-trivial matter; moreover, even when

a semantics is available, it is often not easy to use it

for program analysis. Recent research in rewriting

logic semantics and in tool development based on

such semantics [3, 1] shows encouraging results

with respect to both expressiveness and scalability.

Moreover, the application of these techniques in the

context of real-world low-level languages such as

Verilog [2] gives us hope that the theoretically ideal

semantics-based approach to program analysis may

4



Chapter 1. Introduction

be, after all, also practically feasible.

We decide to explore the expressiveness and

the scalability issues when we propose the design

and implementation of a WCET analyzer. A par-

ticularity of this approach is to use a formal exe-

cutable semantics as the basis for developing anal-

ysis and verification methods. Since we follow

the K framework desiderate of separation of con-

cerns, we investigate to what extent (and for what

kind of abstract executions) the concrete semantics

could be used, as it is, during the analysis process.

Informally, this view of building a system over a

reliable, trusted kernel corresponds to the generic

approach used in theorem provers, for example in

the PVS system [4]. The kernel - in our case the

formal executable semantics of the assembly lan-

5



Chapter 1. Introduction

guage + micro-architecture description, is consid-

ered trusted with respect to extensive testing. The

system is designed with several clear objectives

in mind, as presented in the next subsection, and

it is stretched when we integrate one of the most

successful methodologies in WCET analysis - the

ILP + AI approach.

To summarize our goal in one simple sentence:

we propose a definitional, rewrite-based WCET

analyzer, at both the level of design and the imple-

mentation. Before we provide additional insights

into our decisions/objectives, we present the two

points of view that lead to our solutions.

Our list of sub-objectives include, along with

exploiting the executability and modularity of K,

parameterization and reusability. We elaborate a

6



Chapter 1. Introduction

bit on each of these four desiderates and how they

could be identified in our definitional WCET ana-

lyzer.

Executability

The K framework provides executability, which al-

lows to test the specification and to get correctness

guarantees about it - a K run of a specification is

correct with respect to that particular specification.

The formal semantics of the MIPS-based assembly

language and the architecture description could be

concretely executed and, using test cases, made it

trusted.

Modularity

The K framework, through the rewriting logic, pro-

vides also the modularity of the analyzer. Since we

basically reason about the execution of a program

7



Chapter 1. Introduction

on a specified architecture, it is convenient to keep

the models of these two components separately.

From a structural point of view, K uses modules

to enclose the necessary information to specify a

particular system (or concept). From a functional

point of view, these K modules communicate be-

tween among each other using specialized terms,

which act like messages.

Parameterization

The part of the system that deals with the micro-

architecture modeling is designed and implemented

to cater for a number of hardware-specific argu-

ments. In our particular case, we refer to a paramet-

ric implementation for cache memories behavior

(i.e. cache sizes, cache organization, replacement

policies etc). This parameterization is present in the

8



Chapter 1. Introduction

generic hardware simulators, useful mostly to ex-

periment with the execution of programs in various

environments. In our case, this parameterization is

also useful when we encode cache-specific behav-

ior analyses, and to obtain, in this way, a family of

abstract executions.

Reusability

One desiderate of our design is to consider a core

specification, deemed as being trusted and to extend

it with additional functionality, mostly oriented to-

wards analysis and verification. Then, from this

point of view, of the relationship concrete-abstract

executions, we argue that the implementation is

reusable. A direct consequence is to simplify the

process of implementing abstractions, directly over

a concrete or another abstract specification of a

9



Chapter 1. Introduction

system.

1.2 Contributions

Towards achieving our objectives, the key contribu-

tions of this thesis are:

1. Formal Definition of a RISC Assembly lan-

guage

We design and implement, in K a complete for-

mal definition for a MIPS-like assembly lan-

guage — the PISA instruction set from the Sim-

plescalar toolset. This is novel with respect to

the existing language definitions in rewriting

logic and the K framework. From this defini-

tion, we could extract several useful subsets,

such as the integer-based subset of the language

or the representation for the disassembled exe-

10



Chapter 1. Introduction

cutables, the latter being the focal point in our

further developments.

2. K Specifications for Split-Caches

We design and implement a modular and para-

metric K specification for instruction and data

cache memories behavior. The parametric as-

pects refer to both general caching (i.e. cache

size, associativity, replacement policies on read,

look-up) as well as particular to family of caches

(writing policies in data caches). This is new

with respect to the existing architecture spec-

ifications in rewrite-based programming envi-

ronments. The architecture part is designed to

accommodate further extensions for timing anal-

ysis.

3. General Methodology for Integration of Ab-

11



Chapter 1. Introduction

stractions

We propose a general methodology for integrat-

ing abstractions, directly over the concrete spec-

ification of the system, consisting of the pro-

gramming language definition and the micro-

architecture modeling. This methodology is pre-

sented as a meta-algorithm that is instantiated

for each abstraction of interest, by following

specific design steps. The consequence is that,

during its execution, the abstract steps are in-

terleaved with the concrete steps. In this way,

we could define and measure a reusability fac-

tor. Instances of this approach - Contribution 4

and Contribution 5 - have been tested on a set

of standard benchmarks for WCET estimation.

This methodology is new and K specific, as it

12



Chapter 1. Introduction

takes advantage of a configuration abstraction

mechanism provided by the K framework.

4. Control Flow Abstractions in K

We design and implement, in K, two standard

flow-oriented abstractions for timing analysis:

an abstraction for control-flow graph (CFG) ex-

traction and an abstraction for generation struc-

tural integer linear programming (ILP) constraints.

The first analysis enjoys two variants: one which

considers minor modifications of the original

semantics and relies on reachability analysis

to extract the CFG edges and another which

keeps the core language semantics unmodified

and interleaves concrete and abstract execution

steps. The second analysis is part of the general

methodology of ILP + AI for WCET analysis

13



Chapter 1. Introduction

and extracts a particular kind of structural in-

formation from the program. This is new with

respect to a general way of defining abstractions,

using the general configuration abstraction of

the K framework.

5. Cache Behavior Abstractions in K

We design and implement, in K, a family of

standard analyses for instruction cache behav-

ior. These analyses - may, must and persistence,

are used to classify the program’s instructions

with respect to their interaction with the caching

system. Their definition is an instance of the

previously mentioned meta-algorithm - Contri-

bution 3.

All these set the base for the first definitional

WCET analyzer.

14



References

[1] T. F. Şerbanuţă and G. Roşu. K-Maude: A
rewriting based tool for semantics of program-
ming languages. WRLA 2010, volume 6381 of
LNCS, pages 104–122, 2010.

[2] P. O. Meredith, M. Katelman, J. Meseguer, and
G. Roşu. A formal executable semantics of
Verilog. MEMOCODE’10, pages 179–188.
IEEE, 2010.

[3] G. Roşu and T. F. Şerbănuţă. An overview of
the K semantic framework. Journal of Logic
and Algebraic Programming, 79(6):397–434,
2010.

[4] N. Shankar. Rewriting, inference, and proof.
Workshop on Rewriting Logic and Applications,
pages 1–14, 2010.

15


	List of Publications
	1 Introduction 
	1.1 Motivation
	1.2 Contributions

	References

